
May 1998 The Delphi Magazine 57

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Radio Group Problem

QI regularly use TRadioGroup
components, but have a

gripe with them, which also applies
to TDBRadioGroup controls. When I
change the Cursor property, I am
only able to change the cursor of
the group itself and not the con-
stituent radio buttons. I wouldn’t
mind, but I don’t seem to be able to
access the radio buttons individu-
ally to change their cursors. Is
there any under-the-hood way of
approaching the problem?

AYes, in a word. You can loop
through the component’s

Controls property, which is a list of
the children of the given compo-
nent. It is a good idea to check the
type of each component found to
ensure that it really is a TRadioBut-
ton, but given that, you can then
change the Cursor property. This
can be done explicitly in your code,
or you could make new compo-
nents to automate the process.

The project RBCur.Dpr on the
disk employs both approaches (so
you will need to install the compo-
nents before loading the project).
The project has a Delphi-supplied
radio group and data-aware radio
group and also a new version of
each component (TNewRadioGroup
and TDBNewRadioGroup as defined in
RGroup.Pas). A button causes the
cursor to be changed on all these
components, ensuring that it is
changed not just for the group but
also for the constituent radio but-
tons. Listing 1 shows a snippet that
works with a radio group.

The business of ‘componentis-
ing’ this functionality isn’t as
simple as it might first appear.
When the Cursor property gets
assigned to, the private, non-
virtual TControl.SetCursor method

procedure SetRadioGroupCursor (RG: TCustomRadioGroup; Cur: TCursor);
var Loop: Integer;
begin
with RG do begin
Cursor := Cur;
for Loop := 0 to ControlCount - 1 do
if Controls[Loop] is TRadioButton then
TRadioButton(Controls[Loop]).Cursor := Cur

end
end;
procedure TForm1.Button1Click(Sender: TObject);
begin
{ Set Cursor property of radio buttons in radio group }
SetRadioGroupCursor (RadioGroup1, crHandPoint);
{ Set Cursor property of radio buttons in db radio group }
SetRadioGroupCursor (DBRadioGroup1, crSQLWait);
...

end;

➤ Listing 1

gets called. Since it is non-virtual it
cannot be overridden, but fortu-
nately the method sends the
underlying control a cm_Cursor-
Changed message. We are more
than able to trap this message and
do whatever is necessary. Upon
first glance, it would seem that in
the message handler we should
loop through the controls and set
the cursor much as in Listing 1.
However, this is not quite good
enough, for a reason that I first
observed once upon a time with
TDataSet derivatives.

Consider a form that has been
set up at design-time with a TTable
on it. The table has its DatabaseName
and TableName property set up to
some valid values and the Active
property is set to True. Setting the
Active property to True calls the
internal SetActive method which
tries to open specified table in the
specified database. Having got that
idea firmly in mind, now consider
what happens when this form is
created at runtime. As the form
resource is processed, each com-
ponent is created in turn and each
property value is individually read
in from the resource and set. There
is no guarantee in which order
those properties are stored in the
form file. If the Active property is

retrieved before the DatabaseName
and TableName properties, then it
would be a pointless exercise
trying to open anything.

This is where the Loaded method
comes into play. When a compo-
nent has had all its properties read
in, the Loaded method is called.
This allows any final actions that
couldn’t be performed during the
property reading to be taken care
of. If a value of True for the Active
property is encountered during
the process of reading the TTable
from a form file, it sets an internal
Boolean flag. The Loaded method
checks the flag, and if necessary
performs the real table opening
operation.

The same principle applies with
this radio group cursor problem. If
the Cursor property is read from
the form file before all the radio
button captions have been read
(and therefore before the radio
button objects have been
manufactured) it is pointless
trying to set all their cursors.
Instead, the component’s Loaded
method does that by again sending
a cm_CursorChanged message to
itself.

I was going to reuse the SetRa-
dioGroupCursor routine from
Listing 1 to do the radio button



58 The Delphi Magazine Issue 33

cursor setting, but there would
have been a problem with that.
You will see that the routine sets
the radio group Cursor property,
which calls TControl.SetCursor,
which sends a cm_CursorChanged
message, which my component
traps, which would then call SetRa-
dioGroupCursor and in turn that
would set the Cursor property, etc.
Unsightly recursion would ensue
and that simply would not do. So, a
slightly modified version of the
code is used, since it is called in
response to the component’s
cursor changing, the explicit
cursor change has been removed.

Listing 2 shows one of the two
components (the other is practi-
cally the same). The source code
shows that you can tell if your com-
ponent properties are still being
read from a form stream file by
seeing if the csReading value is in
the ComponentState set property.

Application Time-Out

QI have a requirement to shut
down a Delphi application

after a fixed time during which
there is no keyboard or mouse ac-
tion. Any action should reset the
delay. It should work whichever
form has focus or, indeed, even if
the application has lost focus.

AThis sounds like it might be
to make ‘nobbled’ demo ver-

sions of software. The basic re-
quirement is much like the
mentality of a screen saver. After a
certain period of inaction the sys-
tem will launch the appropriately
specified screen saver, and it does
this by using system-wide hooks
plugged into the mouse and key-
board events. For your application,
you will need only thread-wide
hooks for these events. In a Delphi
application, all the standard user
interface work is done in the pri-
mary thread of the application.

In Issue 26, Warren Kovach dem-
onstrated how to implement
system-wide hooks so we don’t
need to go over too much ground
here [but, be sure to check out
Warren’s update in Issue 32. Ed].
Basically we will need to call
SetWindowsHookEx once for the

type
TNewRadioGroup = class(TRadioGroup)
private
FStreamedCursor: Boolean;

protected
procedure CMCursorChanged(var Msg: TMessage);
message cm_CursorChanged;

procedure Loaded; override;
end;

...
procedure SetRadioGroupCursor(RG: TCustomRadioGroup; Cur: TCursor);
var
Loop: Integer;

begin
with RG do
for Loop := 0 to ControlCount - 1 do
if Controls[Loop] is TRadioButton then
TRadioButton(Controls[Loop]).Cursor := Cur

end;
procedure TNewRadioGroup.CMCursorChanged(var Msg: TMessage);
var
Loop: Integer;

begin
inherited;
if csReading in ComponentState then
FStreamedCursor := True

else
SetRadioGroupCursor(Self, Cursor)

end;
procedure TNewRadioGroup.Loaded;
begin
inherited Loaded;
if FStreamedCursor then begin
FStreamedCursor := False;
Perform(cm_CursorChanged, 0, 0)

end
end;

➤ Listing 2

mouse events and once for the
keyboard events. For each call, we
need a hook routine that will re-set
a timer each time any mouse or
keyboard events fire. At the end of
the program we will need to unin-
stall these events. The code will
look like Listing 3 (taken from the
AppDie.Dpr project).

var
hkKb, hkMouse: HHook;

function HookProc(HHook, Code: Integer; WParam: Cardinal; LParam: Longint):
Longint;

begin
Form1.Timer1.Enabled := False;
Form1.Timer1.Enabled := True;
Result := CallNextHookEx(HHook, Code, WParam, LParam)

end;
function HookProcKB(Code: Integer; WParam: Cardinal; LParam: Longint):
Longint; stdcall;

begin
Result := HookProc(hkKB, Code, WParam, LParam)

end;
Function HookProcMouse(Code: Integer; WParam: Cardinal; LParam: Longint):
Longint; stdcall;

begin
Result := HookProc(hkMouse, Code, WParam, LParam)

end;
procedure TForm1.FormCreate(Sender: TObject);
begin
hkKb := SetWindowsHookEx(wh_Keyboard, @HookProcKB, 0, GetCurrentThreadID);
hkMouse := SetWindowsHookEx(wh_Mouse, @HookProcMouse, 0, GetCurrentThreadID);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
UnhookWindowsHookEx(hkKb);
UnhookWindowsHookEx(hkMouse);

end;
procedure TForm1.Timer1Timer(Sender: TObject);
begin
Close;

end;

➤ Listing 3

There are a number of things to
observe about this code. The hook
procedures that are logged with
the system must be declared
stdcall. For the program to act
normally, you must chain on to the
original hook routine with
CallNextHookEx. Also, to install a
hook just for the current thread,



60 The Delphi Magazine Issue 33

you pass its thread identifier
(obtained with GetCurrent-
ThreadId) to SetWindowsHookEx.

The code on the disk has condi-
tional compilation to make it work
for all Delphi versions. The main
differences for Delphi 1 are the use
of the far keyword instead of
stdcall and GetCurrentTask instead
of GetCurrentThreadId. Also, in
16-bit, you do not need to take the
address of the hook routine, so use
of the @ operator disappears. One
final 16-bit issue is that a TTimer
component’s Interval property
has a maximum value of 65535, lim-
iting the time-out to 65½ seconds.

Of course one obvious improve-
ment that could be made to this
code would be to turn it into a com-
ponent. The file TimeOut.Pas has a
possible implementation, which is
used in the second project App-
Die2.Dpr. Again, this has been writ-
ten to be platform-independent. A
lot of the code is the same, but it
takes care only to execute the time-
out code if running outside the
development environment. Also it
must manufacture the TTimer
object on its own. Additionally,
since some global variables are
used to store the hook handles, the
code tries to ensure only one
instance of the component can be
used in any application. Some of
the important bits of code can be
seen in Listing 4.

Event Complexity

QI often have to change the
state of checkboxes, radio

const
DefaultTimeOut = 10000;

type
TTimeOut = class(TComponent)
private
FTimeOut: Cardinal;

protected
procedure SetTimeOut(Value: Cardinal);
procedure TimerTick(Sender: TObject);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property TimeOut: Cardinal
read FTimeOut write SetTimeOut default DefaultTimeOut;

end;
const Count: Byte = 0;
constructor TTimeOut.Create(AOwner: TComponent);
begin
if Count > 0 then
raise Exception.Create(
'Only one of these time-out components allowed');

Inc(Count);

inherited Create(AOwner);
FTimeOut := DefaultTimeout;
if not (csDesigning in ComponentState) then begin
Timer := TTimer.Create(Self);
Timer.OnTimer := TimerTick;
Timer.Interval := FTimeOut;
hkKb := SetWindowsHookEx(wh_Keyboard, @HookProcKB, 0,
GetCurrentThreadID);

hkMouse := SetWindowsHookEx(wh_Mouse, @HookProcMouse, 0,
GetCurrentThreadID);

end;
end;
procedure TTimeOut.SetTimeOut(Value: Cardinal);
begin
if FTimeOut <> Value then begin
FTimeOut := Value;
Timer.Interval := Value;

end
end;
procedure TTimeOut.TimerTick(Sender: TObject);
begin
Application.Terminate

end;

groups, listboxes and so on. The
problem is that when I do some-
thing like that under program con-
trol, this very action also triggers
the OnClick or OnChange events of
the control I’m changing. This is
generally not what I want. Right
now I’m using Boolean flags to dic-
tate when the event handler code
should execute and when not. As
you can probably imagine, this is
rather cumbersome in large
programs because all kinds of
events trigger other events. Is

there some means to overcome
this problem or to solve it in a nicer
way?

AI can think of two ap-
proaches to this problem.

Your suggestion is one solution,
where the event handlers make
sure they only execute their own
code when appropriate, as
dictated by flags. This involves
writing lots of conditional code
inside your event handlers. A
simple project called Event.Dpr

var
IgnoreCheck: Boolean;

procedure TForm1.Button1Click(Sender: TObject);
begin
IgnoreCheck := True;
try
CheckBox1.Checked := not CheckBox1.Checked

finally
IgnoreCheck := False

end
end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin
if not IgnoreCheck then
begin
ShowMessage('The checkbox was clicked by the user');
{ Blah, blah, blah }

end
end;

➤ Listing 5

procedure TForm1.Button1Click(Sender: TObject);
var
OldHandler: TNotifyEvent;

begin
OldHandler := CheckBox1.OnClick;
CheckBox1.OnClick := nil;
try
{ This won't trigger the event since it has been disabled }
CheckBox1.Checked := not CheckBox1.Checked

finally
CheckBox1.OnClick := OldHandler

end
end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin
ShowMessage('The checkbox was clicked by the user');
{ Blah, blah, blah }

end;

➤ Listing 6

➤ Listing 4



May 1998 The Delphi Magazine 61

shows this idea, and some code
from it can be seen in Listing 5.

An alternative that springs to
mind would involve disabling the
event handler for as long as is nec-
essary and then re-enabling it after-
wards. You can disable an event
handler by assigning nil to it, and
you can save the old handler in an
appropriately typed variable. The
online help, or VCL source code,
can help identify what the appro-
priate event type would be. Some
code that does this is in Listing 6
(from Event2.Dpr).

Following a desire to make this
endeavour slightly less repetitive,
to cut down on the variable decla-
rations, I produced Listing 7 (from
Event3.Dpr). The idea is to have a
helper routine that stores the
event details. To do this I am using
a typed constant (otherwise
known as an initialised static vari-
able) of the generic TMethod type
with event type typecasts where
necessary. The problem here is
that the syntax is not liked by
Delphi 1. So, if you are using Delphi
2 or 3, you could take this
approach.

Since the calls to SetHandler in
Listing 7 ends up being a little over-
bearing, we now have the final
offering. Listing 8 comes from
Event4.Dpr. This code works in all
versions of Delphi (so far), and
uses runtime type information
(RTTI) to disable and reset the
event handler. The details of how
the RTTI stuff operates are not
strictly that important, but basi-
cally the same things happen as
with Listing 7. Having written the
routine once, the business of dis-
abling and re-enabling the event
handler becomes a little simpler.

Updating System Files

QAs described in The Delphi
Magazine Issue 31’s Clinic, I

encountered the Delphi 3 display
glitch too. I have now got a copy of
ComCtl32.DLL v4.71 but am unable
to install this version over the cur-
rent one (v4.70). I am running
Windows NT 4 and when I try to
copy it, I get an error dialog telling
me the file is in use. Booting from a
disk to solve this doesn’t work for

const
NilMethod: TMethod = (Code: nil; Data: nil);

function SetHandler(Handler: TMethod): TMethod;
const
OldHandler: TMethod = (Code: nil; Data: nil);

begin
Result := OldHandler;
OldHandler := Handler

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
CheckBox1.OnClick := TNotifyEvent(SetHandler(TMethod(CheckBox1.OnClick)));
try
{ This won't trigger the event since it has been disabled }
CheckBox1.Checked := not CheckBox1.Checked

finally
CheckBox1.OnClick := TNotifyEvent(SetHandler(NilMethod))

end
end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin
ShowMessage('The checkbox was clicked by the user');
{ Blah, blah, blah }

end;

➤ Listing 7

uses
TypInfo;

procedure SetHandler(AObject: TObject; Event: String; Enable: Boolean);
const
{ Used for saving old event handler }
OldHandler: TMethod = (Code: nil; Data: nil);
{ Used for disabling event handler }
NilMethod: TMethod = (Code: nil; Data: nil);

var
PropInfo: PPropInfo;

begin
PropInfo := GetPropInfo(AObject.ClassInfo, Event);
if not Assigned(PropInfo) then
raise Exception.CreateFmt('Event %s not found in %s class',
[Event, AObject.ClassName]);

with PropInfo^ do begin
if PropType^.Kind <> tkMethod then
raise Exception.CreateFmt('%s is not an event', [Event]);

if Enable then
SetMethodProp(AObject, PropInfo, OldHandler)

else begin
OldHandler := GetMethodProp(AObject, PropInfo);
SetMethodProp(AObject, PropInfo, NilMethod)

end
end

end;
procedure TForm1.Button1Click(Sender: TObject);
begin
SetHandler(CheckBox1, 'OnClick', False);
try
{ This won't trigger the event since it has been disabled }
CheckBox1.Checked := not CheckBox1.Checked

finally
SetHandler(CheckBox1, 'OnClick', True);

end
end;
procedure TForm1.CheckBox1Click(Sender: TObject);
begin
ShowMessage('The checkbox was clicked by the user');
{ Blah, blah, blah }

end;

➤ Listing 8

me, because my system partition is
NTFS. Do you have any thoughts on
how to solve this?

AThis question opens up a
standard problem of how to

install a file that Windows cur-
rently has in use.

Windows 95 users can usually do
this, as they can boot into DOS and
then do a manual file copy, but to
cater for NT users, and also to
cater for automating the process,

we need more. Unfortunately, the
approach required is inconsistent:
it differs for Windows 95 and
Windows NT.

With Windows NT, you can write
a small program to do the job,
using the MoveFileEx Windows API
call. Assuming that you have the
newer library file stored as

C:\Windows\System32\ComCtl32.New

then a call like this should do it:



62 The Delphi Magazine Issue 33

MoveFileEx(

‘C:\Windows\System32\ComCtl32.New’,

‘C:\Windows\System32\ComCtl32.Dll’,

MoveFile_Delay_Until_Reboot)

The help for MoveFileEx says it
operates by storing relevant infor-
mation in the registry which is
processed whilst NT is initialising.

For Windows 95, the Move-
File_Delay_Until_Reboot flag is not
supported, so we need to make use
of WinInit.Exe. This is the program
that produces the occasional
Windows 95 start-up messages
that you may have seen, like:

Please wait while Setup updates
your configuration files.

This may take a few minutes...

Completed updating files,
continuing to load Windows...

WinInit operates using an INI file
called WinInit.Ini in the Windows
directory. If it exists, WinInit will
process the file during start-up,
before Windows switches to pro-
tected mode, and then it will
rename it with a .BAK extension.
An appropriate looking section
from this INI file that will do the job
would be:

[rename]

C:\windows\system\comctl32.dll=

c:\windows\system\comctl32.new

The sample project on the disk
UpdateSystemFile.Dpr uses a few
components to simplify setting
these restart options (see Figure
1). Listing 9 contains the code for
the three buttons. Notice that care
is taken to ensure short file and
path names are used for the
WinInit approach. Since WinInit
executes before the long filename
management code is running,
short filenames are mandatory.
Additionally, the handy Minimize-
Name routine from the FileCtrl unit
is employed to make sure the file-
name fits nicely onto the form. If
the filename would be too long, an
ellipsis (...) is employed to replace
the excess characters. You can see
this in the source file name in
Figure 1.

But now, with all that
said, I can offer a potentially
simpler solution in the case
of the common control
library. The following web
page has a utility program
that will do the job for you:

www.microsoft.com/msdn/
downloads/files/
40comupd.htm

40ComUpd.Exe (which is
about 500Kb) can be down-
loaded from here and, when
executed, will update your
library to version 4.72. It almost
certainly does what is described
above and means that if you run it
and then restart Windows, you will
have the newer library without any
fuss and bother. However, the
technique has many more applica-
tions, of course, not least in
installer utilities.

For more information on these
file update techniques, refer to
article Q140570 on the Microsoft
Developer Network Library CD or
the appropriate area on the

➤ Listing 9

Microsoft website. Article
Q172456 also describes how to use
.INF files to set the files up in the
first place. This is explored in more
detail in Appendix C of the Micro-
soft Windows 95 Resource Kit.

Acknowledgements
Thanks are due to Sandy McCourt
for the original source code that
solves the application time-out
problem. Thanks to Jack Bakker
for locating the appropriate
Microsoft web page for the
common control library update.

➤ Figure 1

uses FileCtrl, IniFiles;
procedure TForm1.btnChooseSrcClick(Sender: TObject);
begin
if dlgSrc.Execute then begin
lblSrc.Caption := MinimizeName(dlgSrc.FileName, Canvas, btnChooseSrc.Width);
btnChooseDst.Enabled := True;
btnChooseDst.SetFocus

end
end;
procedure TForm1.btnChooseDstClick(Sender: TObject);
begin
dlgDst.InitialDir := ExtractFilePath(dlgSrc.FileName);
if dlgDst.Execute then begin
lblDst.Caption := MinimizeName(dlgDst.FileName, Canvas, btnChooseDst.Width);
btnSetup.Enabled := True;
btnSetup.SetFocus

end
end;
procedure TForm1.btnSetupClick(Sender: TObject);
var
Src, Dst: array[0..MAX_PATH] of Char;

begin
case Win32Platform of
VER_PLATFORM_WIN32_WINDOWS :
with TIniFile.Create('WinInit.Ini') do
try
GetShortPathName(PChar(dlgSrc.FileName), Src, MAX_PATH);
GetShortPathName(PChar(dlgDst.FileName), Dst, MAX_PATH);
WriteString('rename', Dst, Src)

finally
Free

end;
VER_PLATFORM_WIN32_NT :
begin
Win32Check(MoveFileEx(PChar(dlgSrc.FileName),
PChar(dlgDst.FileName),
MoveFile_Delay_Until_Reboot))

end
end

end;


	Radio Group Problem
	Application Time-Out
	Event Complexity
	Updating System Files
	Acknowledgements

